
January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

TOWARDS EXTREME-SCALE SIMULATIONS FOR LOW MACH
FLUIDS WITH SECOND-GENERATION TRILINOS

PAUL LIN, MATTHEW BETTENCOURT, STEFAN DOMINO, TRAVIS FISHER, MARK

HOEMMEN, JONATHAN HU, ERIC PHIPPS, ANDREY PROKOPENKO, SIVASANKARAN

RAJAMANICKAM, CHRISTOPHER SIEFERT, STEPHEN KENNON

Sandia National Laboratories, Post Office Box 5800 Mail Stop 1320

Albuquerque, NM 87185-1320, USA

Received July 2014

Revised September 2014
Communicated by Guest Editors

ABSTRACT

Trilinos is an object-oriented software framework for the solution of large-scale, complex

multi-physics engineering and scientific problems. While Trilinos was originally designed
for scalable solutions of large problems, the fidelity needed by many simulations is sig-

nificantly greater than what one could have envisioned two decades ago. When problem

sizes exceed a billion elements even scalable applications and solver stacks require a com-
plete revision. The second-generation Trilinos employs C++ templates in order to solve

arbitrarily large problems. We present a case study of the integration of Trilinos with a
low Mach fluids engineering application (SIERRA low Mach module/Nalu). Through the

use of improved algorithms and better software engineering practices, we demonstrate

good weak scaling for up to a nine billion element large eddy simulation (LES) problem
on unstructured meshes with a 27 billion row matrix on 524,288 cores of an IBM Blue

Gene/Q platform.

Keywords: Solver library, Trilinos, Vertical integration, Extreme-scale simulations

1. Introduction

Trilinos is an object-oriented software framework for the solution of large-scale,
complex multi-physics engineering and scientific problems [1]. While Trilinos was
originally designed for scalable solutions of large problems, the fidelity needed by
many simulations is significantly greater than what one could have envisioned two
decades ago. This requires a revision of Trilinos that supports arbitrarily large
problem sizes and provides a path forward for achieving high performance on future
architectures.

Computational simulations for many challenging scientific and engineering prob-
lems at Sandia National Laboratories (SNL) requires ever increasing fidelity. An
example is the accurate simulation of fire environments that occur in accident sce-
narios., e.g. hydrocarbon pool fires. Figure 1 depicts an example hydrocarbon JP-8
pool fire experiment and a numerical simulation. The SIERRA/Fuego [2] engineer-

1



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

2 Parallel Processing Letters

ing application, built on top of the SIERRA Framework [3], is currently employed
to simulate the fire environment. SIERRA/Fuego is a low Mach number, turbulent
reacting flow code. It employs Trilinos’ solvers through the Finite Element Inter-
face (FEI). The choice of 32-bit ordinals for the entire stack from the application to
solvers (SIERRA Framework, FEI, and Trilinos) has limited simulations to fewer
than about two billion entities (e.g., nodes, elements, edges, matrix rows). This is
a severe limitation on the fidelity of current and especially future simulations, and
drove the development of a new application code.

This paper describes the second-generation Trilinos and its integration into a new
engineering application (SIERRA low Mach module/Nalu; henceforth referred to as
“Nalu”) that does not employ the SIERRA Framework and FEI. This work focuses
on the second-generation Trilinos’ ability to enable high fidelity simulations that
were not previously possible with SIERRA/Fuego and demonstrate scalability for
very large problems. We limit this study to inter-node scalability. The new revision
of Trilinos also addresses on-node scaling on both multicore nodes and accelerators
through the Kokkos package (see [4] for Kokkos’ design and path forward). This
paper is an extension of previous work [5], and includes results at higher core counts
and presents further improvements. Some of the software engineering challenges,
e.g. the importance of special cases to improve performance, were discussed in the
previous work and will not be discussed here.

(a) (b)

Fig. 1. Hydrocarbon JP-8 pool fire (a) experiment and (b) numerical simulation

Our primary contributions in this work are:

• Significant revision of the second-generation Trilinos solver stack, focused
on performance and scalability.

• Demonstrated the capability and scalability of the second-generation Trili-
nos with a new application SIERRA/Nalu for 9 billion nodes on 524,288
cores.

• Case study describing issues and their solutions faced in integrating a large
solver stack with an application, as well as best practices.



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

Towards Extreme-Scale Simulations with Second-Generation Trilinos 3

For perspective on the size of the simulations enabled by the new Nalu code com-
pared with other applications, we briefly describe the few other comparable large
scale simulations in the literature. Problem scale of interest depends on the model-
ing technique, e.g., Direct Numerical Simulation (DNS) or Large Eddy Simulation
(LES), the choice of structured or unstructured meshes (latter more challenging)
and explicit or implicit coupling strategies (latter more challenging). On structured
meshes, Hawkes et al. [6] have demonstrated LES simulations of up to seven bil-
lion elements on 120k cores. On unstructured meshes, implicit LES of reacting flow
simulations with 2.6 billion tetrahedral elements [7] and recently 20 billion tetra-
hedral elements (about 3.5 billion nodes) were done by CORIA-CNRS (University
of Rouen and the Institute of Applied Sciences). Intermediate approaches are led
by the Uintah/Arches code base effort of the University of Utah (C-SAFE ASCI
Alliance center) where structured orthogonal explicit momentum is coupled with a
linear pressure Poisson equation (PPE) solve using the Hypre algebraic multigrid
preconditioner. Their simulations have reached 256k cores on meshes with about 6
billion structured hexahedral elements [8]. Although the low Mach number simu-
lations performed in this study will reach 9 billion node meshes on 524,288 cores,
the data presented will only reflect a small physics simulation time. Timings will be
focused on matrix assembly and linear solve times. A full verification and validation
study will be the focus of future work.

We summarize Trilinos and Nalu in Sections 2 and 3, then discuss the integration
in Section 4. Section 5 presents results showing the new capability provided by the
second-generation Trilinos, and Section 6 concludes and outlines future work.

2. Trilinos

2.1. Trilinos Overview

Trilinos [1] is an open-source software project to develop algorithms and enabling
technologies for solving large-scale mathematical problems from scientific and en-
gineering applications. Supported capabilities include distributed-memory parallel
linear algebra, iterative solvers for large sparse linear systems and eigenproblems,
nonlinear solvers and optimization, continuation and bifurcation analysis, time in-
tegrators, partial differential equation discretizations, parallel partitioning for load
balance, incomplete factorizations and relaxations, multilevel preconditioners (such
as algebraic multigrid), automatic differentiation, and embedded uncertainty quan-
tification. Trilinos is based at Sandia National Laboratories, but includes significant
external contributions. Most Trilinos packages have a modified BSD license; a few
have the GNU Lesser General Public License. Trilinos’ common build and test in-
frastructure substantially reduces the effort required to deploy new algorithms. Fur-
thermore, many applications are standardizing on Trilinos’ interfaces, which gives
them access to all Trilinos solver components.



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

4 Parallel Processing Letters

2.2. Trilinos Packages Used by Nalu

This paper mentions two “generations” of Trilinos solver stacks. The “second-
generation” stack is a complete rewrite of the first stack, in order to support the
following new capabilities:

• Solve problems with more entities than can be indexed by a standard 32-bit
integer (> 2 billion)

• Allow use of data types other than double-precision floating-point, e.g.,
complex or extended precision, without hard-to-maintain duplicate imple-
mentations

• Enable and simplify the ongoing addition of MPI + shared-memory paral-
lelism for many different programming models (e.g., OpenMP, CUDA)

Table 1 summarizes both stacks. This paper demonstrates the second-generation
stack’s scalability in e.g., Figure 4, especially when integrated in Nalu. Each one
of these packages had to undergo significant changes to demonstrate scalability at
this scale. The dependency diagram in Figure 2 shows the complex dependencies
between these packages.

Table 1. Comparison of first- vs. second-generation Trilinos solver stack packages used by Nalu.

Functionality Current New

Distributed linear algebra Epetra [1] Tpetra [9]
Iterative linear solvers AztecOO [10] Belos [11]

Incomplete factorizations AztecOO, Ifpack Ifpack2

Algebraic multigrid ML [12] MueLu [13]
Partition & load balance Zoltan [14] Zoltan2[15]

Direct solvers interface Amesos Amesos2 [11]

We briefly mention how Nalu uses each package here and refer the reader to
their respective references for other capabilities supported in these packages. For
this study, all linear solves in Nalu used Belos’ [11] implementation of GMRES [16]
or TFQMR [17]. Solves for all equations other than the pressure Poisson equation
(PPE) were preconditioned using Ifpack2’s symmetric Gauss-Seidel preconditioner.
For the PPE, Nalu used MueLu’s [13] algebraic multigrid preconditioner with If-
pack2’s Chebyshev smoother on all levels except for the coarsest, which used the
SuperLU direct solver through the Amesos2 interface [11]. To improve efficiency
of the multigrid preconditioner, MueLu rebalances its coarser levels using Zoltan2’s
multijagged algorithm [18]. MueLu explicitly forms coarser-level matrices, for which
a key computational kernel is Tpetra’s [9] sparse matrix-matrix multiply.

Zoltan2’s [15] multijagged algorithm [18] is a recent addition to Trilinos’ parti-
tioning capabilities that is aimed at extreme-scale simulations. The original spatial
partitioning algorithm in Zoltan [14] uses parallel recursive coordinate bisection
(RCB). Parallel RCB migrates the coordinates after each bisection. At extreme
scales, with the number of parts in the hundreds of thousands and the number of



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

Towards Extreme-Scale Simulations with Second-Generation Trilinos 5

Matrices & vectors

SIERRA / Nalu finite element application

MueLu

Amesos2

Zoltan2

Belos

Ifpack2

Tpetra

Kokkos

SuperLU

Teuchos

BLAS & 
LAPACK MPI

Preconditioners

External libraries 

Load balancing & 
partitioning

Iterative linear solvers

Fig. 2. Software dependencies between SIERRA / Nalu, the Trilinos packages it uses, and ex-
ternally provided libraries. Arrows show dependencies pointing at the target, that is, the “client”

used by the other (source) package. Solid lines indicate currently required dependencies, and dot-

ted lines indicate optional or likely future dependencies. To save space, we omit most dependencies
on the utilities package Teuchos.

coordinates in the billions, both bisection and coordinate migration during partition-
ing are the partitioner’s scalability bottlenecks. Multijagged, a multisection-based
partitioner, reduces the number of levels of recursion and is therefore much more
scalable for very large numbers of parts. It also minimizes data migration by choos-
ing to migrate only when it will help the partitioner’s scalability. Deveci et al. [18]
describe the algorithm in detail and present performance of multijagged with RCB
on various data sets that show multijagged to be a scalable alternative to RCB.

3. Sierra/Nalu Application Code

SIERRA low Mach module/Nalu is a generalized unstructured, massively paral-
lel, low Mach number variable density turbulent flow application code. This code
base began as an effort to prototype Sierra Toolkit [19] usage along with direct
parallel matrix assembly to the Trilinos Epetra and Tpetra data structures [1].



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

6 Parallel Processing Letters

This generalized unstructured code base supports both elemental (control volume
finite element) and edge (edge-based vertex centered) discretizations in the context
of an approximate pressure projection algorithm (equal order interpolation using
residual-based pressure stabilization). The generalized unstructured algorithm is
second order accurate in space and time. Low dissipation advection schemes are
supported in addition to second and third order upwind variants where the use of
projected nodal gradients is noted. A variety of turbulence models are supported,
however, all are classified under the class of modeling knows as Large Eddy Sim-
ulation (LES). The chosen coupling approach (pressure projection, operator split)
results in a set of fully implicit sparse matrix systems. Linear solves are supported
by the Trilinos Tpetra interface.

Detailed descriptions of the governing equations are provided in the Nalu theory
manual [20], but we provide a very brief summary here. The Favre-filtered equation
set (shown in integral form) that are used in this study are as follows.

The continuity equation is given by∫
∂ρ̄

∂t
dV +

∫
ρ̄ũini dS = 0,

where ρ̄, ũi, V , S and ni denote mean density, Favre-averaged velocity components,
volume, surface and normal vector to the surface, respectively.

The momentum equation is given by∫
∂ρ̄ũi
∂t

dV+
∫
ρ̄ũiũjnjdS+

∫
p̄nidS =

∫
τ̄ijnjdS+

∫
τuiujnjdS+

∫
(ρ̄− ρ◦) gidV,

where p̄, τ̄ij , ρ◦, gi denote mean pressure, mean viscous shear stress tensor, ambient
density, and gravity vector and the turbulent stress τuiuj

is defined as

τuiuj ≡ −ρ̄(ũiuj − ũiũj).

The conserved mixture fraction (used to compute state space quantities, e.g.,
density, viscosity, etc.) is∫

∂ρ̄Z̃

∂t
dV +

∫
ρ̄ũjZ̃njdS = −

∫
τZujnjdS +

∫
ρ̄D

∂Z̃

∂xj
njdS.

In the above equation, Z̃ and D denote Favre-averaged mixture fraction and an
effective molecular mass diffusivity, where sub-filter correlations have been neglected
in the molecular diffusive flux vector. The turbulent diffusive flux vector is

τZuj ≡ ρ̄
(
Z̃uj − Z̃ũj

)
.

This sub-filter correlation is modeled by the gradient transport approximation

τZuj
≈ −ρ̄Dt

∂Z

∂xi
.

Finally, the one equation turbulent model used for LES closure is∫
∂ρ̄ksgs

∂t
dV +

∫
ρ̄ksgsũjnjdS =

∫
µt
σk

∂ksgs

∂xj
njdS +

∫
(P sgs
k −Dsgs

k ) dV.



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

Towards Extreme-Scale Simulations with Second-Generation Trilinos 7

Above, ksgs, µt, P
sgs
k and Dsgs

k denote subgrid turbulent kinetic energy, subgrid
turbulent eddy viscosity, production of subgrid turbulent kinetic energy, and dissi-
pation of turbulent kinetic energy, respectively.

Nalu supports two discretizations: control volume finite element (CVFEM) and
edge-based vertex centered (EBVC). Both are finite volume formulations and con-
sidered to be vertex-based schemes. Figure 3 shows how the control volumes (the
mesh dual) are constructed about the nodes. For the CVFEM approach, a linear
basis is defined. This linear basis is used to interpolate within the element. Gradi-
ents of the basis functions are used for diffusion terms. When using CVFEM, the
canonical 9-point (2D quadrilateral meshes) and 27-point (3D hexahedral meshes)
stencils are recovered. For the EBVC scheme, the dual mesh is used to construct
area vectors at edge mid-points and nodal volumes based on the subcontrol vol-
umes. When using EBVC, the canonical five-point (2D quadrilateral meshes) and
7-point (3D hexahedral meshes) stencils are recovered.

X

Finite Volumes and Faces

1
2

3

6

98

7

4

5

x

x

xx
x

x

x
x

Finite Elements and Nodes

Integration Point

Fig. 3. A control volume centered about a finite-element node.

For the time dependent simulations performed for this work, the BDF2 time in-
tegrator [21] was used. For each time step, two nonlinear steps (Picard steps) were
performed. A Krylov subspace method iterative solver is employed (e.g. GMRES),
preconditioned by symmetric Gauss-Seidel except for the PPE which is precondi-
tioned by an algebraic multigrid preconditioner.

4. Integrating Trilinos in Nalu

Integrating a large application code base with an equally large solver stack brought
up several challenges on both sides. We describe some of these and how we overcame



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

8 Parallel Processing Letters

them in this section. They are grouped into two subsections, based on whether
the challenges related more to parallel scalability and performance, or to software
engineering. However, we found that most cut across both software engineering and
performance issues.

4.1. Scalability Challenges from Integration

4.1.1. Matrix assembly and data structures

Much of the integration effort revolved around the assembly of discrete finite element
matrices and vectors into Trilinos distributed memory data structures. The appli-
cation, like Trilinos, uses a distributed-memory parallel programming environment.
Mesh decomposition, global numbering of unknowns, and “ghosting” are just some
of the difficulties with mapping an application to a solver library. We briefly out-
line our approach below, which we believe applies to a broad range of applications
involving discretization of partial differential equations on unstructured meshes.

We construct the assembly process using the following assumptions. First, un-
knowns are located at nodes. The application knows how to map each node to a
unique global identifier or “index.” The unknowns at each node have a simple im-
plicit mapping to a global identifier corresponding to a row in the linear system.
Second, the application decomposes the computational domain over MPI processes
by elements. Multiple processes may share nodes at process boundaries, but each
node has a unique owning process. We call the set of nodes on each process which
that process owns its owned nodes, and the set of nodes shared by that process,
but not owned by it, its remote nodes (see Figure 4a). Similarly, each matrix has
corresponding owned and remote rows and columns. Third, assembling the linear
system requires contributions from neighboring processes for all shared nodes. Fi-
nally, nodes and unknowns on each process are numbered consecutively in [0, n)
with a local index. Global indices in [0, N) are sparse on each process, so conver-
sion from local to global numberings (which uses an array look-up) is faster than
conversion from global to local (which uses a hash table look-up). In our approach,
Trilinos owns the sparse matrix and dense vector data structures corresponding to
the linear systems to solve, and the application owns the assembly process and its
corresponding mesh and element data structures.

Trilinos’ matrix storage classes have the option to let users store off-process
contributions directly into a matrix. The matrix can then assemble off-process con-
tributions into a consistent view with a single function call that does not require
specification of the required interprocess communication. However, this simplicity
comes at a price: the function assumes that the communication pattern may change
from call to call. Computing this pattern itself requires communication, which is
more expensive than executing the pattern. However, in our application, the mesh
changes either rarely or not at all. This means that the communication pattern
rarely or never changes. Thus, it was more efficient to implement a custom global
assembly approach that reuses a precomputed communication pattern. Trilinos has



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

Towards Extreme-Scale Simulations with Second-Generation Trilinos 9

more specialized interfaces that let users precompute and reuse a communication
pattern from its source and target data distributions.

This approach’s communication pattern follows a “push” model. As noted above,
shared nodes require contributions from neighboring processes. Only the contribu-
tions for each finite element owned on a process are known to the nodes on that
process. Thus, a shared node that is owned on a given process cannot construct
its full dependency graph without receiving the dependency information from other
processes. The communication pattern needed to communicate the dependencies is
the same as what is needed to assemble the matrix entries.

Our approach relies on two matrices on each process: one for owned rows and
one for remote rows. To construct these matrices, first we construct the depen-
dency graphs. The graph for the remote matrix is entirely locally defined, where
the columns of the matrix correspond to the contributions of the local finite ele-
ments to the remote nodes. The owned matrix is initially constructed using local
data, where the columns are the contributions of the local finite elements to the
owned nodes. The rows of the remote graph are communicated to the owning pro-
cesses. The received dependency data is added to the owned graph, completing the
required dependency information. Owned and remote matrices are created from the
owned and remote graphs, respectively. Similarly, owned and remote linear system
residual vectors are constructed. During assembly, these matrices and vectors are
filled on each process, and the remote entries are communicated to the owning pro-
cesses using the same communication pattern as the graph. This process relies on
Trilinos functionality to achieve the goal of efficient assembly, but this procedure
of splitting the matrix into local and remote components and communicating the
remote portion to owning process matrix contributions is general and would apply
if one is building fully assembled matrix representations.

In other words, the local representation of the owned matrix, O, which has n
rows and m total nonzero columns on a given process, p, is defined as

Op =

 a0,0 · · · a0,n−1 a0,n · · · a0,n+r−1 a0,n+r · · · a0,m−1

...
. . .

...
...

. . .
...

...
. . .

...
an−1,0 · · · an−1,n−1 an−1,n · · · an−1,n+r−1 an−1,n+r · · · an−1,m−1

 ,

where r is the number of remote rows and the subscripts on the entries, a, indicate
the local row and column ids. The first submatrix is all locally owned data, the
second is all data that is available on process, and the third submatrix is filled in
with remote communication. The remote matrix, R, on each process is defined as

Rp =

 an,0 · · · an,n−1 an,n · · · an,n+r−1

...
. . .

...
...

. . .
...

an+r−1,0 · · · an+r−1,n−1 an+r−1,n · · · an+r−1,n+r−1

 .

Note that only data available on the process is added to the remote matrix.
Assembly of these two sub-matrices involves three sets of identifiers: the global

index of the unknown, its process-local index, and the row in each of the matrices. As



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

10 Parallel Processing Letters

CPU 0 CPU 1

(a)

(b)

Fig. 4. (a) Illustration of node ownership, triangle nodes are all owned by CPU rank 0, square

nodes owned by CPU rank 1. Solid black triangle nodes are remote nodes of CPU rank 1. Solid black
square nodes are contributors for owned nodes of CPU 0 but not actually remote nodes of CPU

0. (b) Comparison of matrix assembly: baseline compared with direct to Tpetra with additional

performance optimizations. Latter is faster and scales considerably better: over a factor of ten
reduction in assembly time at 16k cores.

mentioned above, using global indices is substantially slower than local indices, due
to global to local conversion. Although determining the local index is fast, it does not
directly correspond to a row in the local or remote matrices. Therefore, we created
a mapping between each local identifier and each row in the matrix. The mapping
is made fast by constructing a local ordering where the first sequence of values
corresponds to the locally owned unknowns, and the remaining values correspond
to unknown contributions on remote processes. This ordering allows one to assemble
the matrices using only local indices. This approach adds a level of indirection to
the assembly process, and thus a level of complexity. However, the combination
of these two processes, split local and remote matrices and local indexing, greatly
improves performance in the assembly process. Figure 4b presents a comparison of
the matrix assembly for the baseline approach that uses the SIERRA framework
and FEI, versus the direct assembly to Tpetra approach with the two performance
optimizations described above. The latter approach is consistently faster and scales
significantly better, providing over a factor of ten reduction in assembly time at 16k
cores. Ideally this approach can be generalized and added to the Trilinos libraries.

4.1.2. Multigrid scaling

The MueLu multigrid library utilizes a variant of an algebraic multigrid method
called smoothed aggregation [22]. This algorithm constructs coarser levels by trans-
forming a group of fine level nodes (an aggregate) into a single coarse level node.



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

Towards Extreme-Scale Simulations with Second-Generation Trilinos 11

It does this in an uncoupled fashion, where every parallel MPI process owns a sub-
domain, and aggregates are prohibited from crossing subdomain boundaries. In the
following, a transfer operator from a coarse to a fine level is called a prolongator,
while the transfer operator from a fine to a coarse level is called a restrictor.

Simulations of real problems at large scales allowed us to identify scaling bot-
tlenecks which did not manifest at smaller scales, and to optimize several kernels.
We provide a few examples as follows.

Linear algebra kernels Smoothed aggregation algebraic multigrid constructs the
prolongator in several steps. First, it forms a filtered matrix Af from the original
matrix A, by identifying strongly connected degrees of freedom. Next, it forms a
tentative prolongator Ptent via aggregation based on the filtered matrix. Finally, it
smooths Ptent via a (damped) Jacobi iteration to form the final prolongator P ,

P =
(
I − ωfD

−1
f Af

)
Ptent , (1)

where Df is the diagonal of Af , and ωf = 4
3ρ(D−1

f Af )
uses an estimate of the spectral

radius of D−1
f Af . We describe three optimizations to improve scalability: optimizing

the construction of Af , using a cheaper approximation of ωf , and optimizing the
Jacobi kernel.

We originally built the matrix Af (more specifically, its graph) by constructing
a new matrix containing only unfiltered entries. This approach was shown to scale
poorly at large processor counts. We replaced it by zeroing out filtered entries in a
copy of the original matrix A, and modifying the sparse matrix-matrix multiplica-
tion to ignore zero entries. This approach avoided multiple rounds of communication
associated with a new matrix construction. This improvement is called “improved
construction of filtered matrix” in Section 4.1.3.

Our original approach to calculate ωf required an estimate for the largest eigen-
value of Af , which was expensive as it required multiple rounds of matrix-vector
multiplications. We replaced ωf with an ω value based on the original matrix A,
ω = 4

3ρ(D−1A) , where D is the diagonal of A. ρ(D−1A) had previously been com-
puted during the setup for the Chebyshev smoother, so reusing this value avoided
additional matrix-vector products. This improvement is called “eigenvalue reuse”
in Section 4.1.3.

Prolongator smoothing (Equation 1) traditionally takes three steps: first, a
matrix-matrix multiplication B = AfPtent, then a diagonal scaling C = ωD−1

f B,
and finally, a matrix-matrix addition: P = C+Ptent. This maximizes software reuse
of existing computational kernels, but requires multiple passes over the data and
rounds of communication. We implemented an improved approach, which uses a
fused kernel for the entire prolongator smoothing operation (Equation 1). We begin
by assuming that all matrices are distributed by row and the row distributions of
Af and Ptent are identical to the row distribution desired for P . We also assume
that all entries on the diagonal of Af are non-zero (or else D−1

f would be unde-



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

12 Parallel Processing Letters

fined). These assumptions constrain the sparsity pattern (ignoring zeros introduced
by numerical cancellation) of B = AfPtent to contain the sparsity pattern of Ptent.
Thus, the parallel communication structure of P is identical to that of B (assuming
that zeros introduced by numerical cancellation are not dropped), and we can use
that communication structure for P . The fused prolongator smoothing kernel can
duplicate the structure of the matrix-matrix multiplication kernel, where the only
modifications occur in the serial component.

Rebalancing kernels Each consecutive coarsening during aggregation reduces the
number of nodes per subdomain. Once this number gets too small, communication
starts to dominate computation. At this point, we use either Zoltan’s or Zoltan2’s
geometric partitioning to rebalance the problem to a smaller number of processors.
This reduces the amount of communication.

Initial comparisons showed a performance degradation between MueLu with
Zoltan and MueLu with Zoltan2. The main cause was a specific algorithm, called
remapping, present in Zoltan but absent in Zoltan2. Remapping reduces the amount
of migrated data by maximizing the overlap of the original matrix with the rebal-
anced one. It improves the communication pattern, which reduces the preconditioner
apply time. The effect of remapping for small problems was not large enough to be
included in the original design, but its impact was significant at scale. The MueLu
and Zoltan2 teams consequently implemented a remapping procedure similar to
Zoltan’s remapping. For the 140 million element test case on 2048 cores, discussed
in Section 4.1.3, the PPE solve time (not including setup) for MueLu/Zoltan2 with-
out vs. with remapping is 181 resp. 143 seconds. Lack of remapping increased solve
time by 27%; effects are even more pronounced at scale.

Despite significant improvements, data migration remained an expensive opera-
tion, particularly during setup. The original approach was to migrate three matrices:
coarse matrix, prolongator and restrictor. We improved performance by replacing
migration of the prolongator and restrictor during the setup phase by a significantly
cheaper migration during the solve phase, which required us to migrate only vectors.
This improvement is called “implicit matrix rebalancing” in Section 4.1.3.

4.1.3. Tracking performance over time

Although the goal for the new code is to enable higher fidelity simulations, we had to
do so without sacrificing the production code’s performance for smaller problems.
To achieve this goal, it was essential to track performance comparisons between
the first- and second-generation solver stacks (Table 1). We used one instance of
the test case described in the results section (Section 5), a 140 million element
problem run on 2048 processors of the Cielo Cray XE6 sited at Los Alamos National
Laboratory. The system consists of 8944 compute nodes (dual-socket 2.4GHz 8-core
AMD Magny-Cours, total 142,000 cores) with a Cray Gemini 3D torus interconnect.

Figure 5 tracks performance over time for the new Tpetra-based Nalu code com-



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

Towards Extreme-Scale Simulations with Second-Generation Trilinos 13

Fig. 5. Tracking performance over time, comparing new Tpetra-based Nalu with baseline. Vertical
axis: ratio of the times of new Tpetra-based Nalu code to baseline code. Ratio < 1 means new code

is faster. By the end, execute and solve times are 26% and 1% faster respectively than baseline.

pared with the baseline Epetra-based code that employed the SIERRA framework
and FEI, for the edge-based scheme (ratio between new and baseline was greater for
edge-based than element-based method). Vertical axis plots the time ratio (ratio <
1 means the new code is faster than the baseline). “Execute” time is the wall time
(sans I/O time) of the simulation. “Matrix assemble” time is the time to construct
the matrices. The “matrix solve” reported here sums the time for the five equations
(momentum equations, PPE, and mixture fraction). We solved the momentum and
mixture fraction equations with symmetric Gauss-Seidel preconditioned GMRES,
and solved the PPE with multigrid-preconditioned GMRES. We set up the multigrid
preconditioner once in MueLu and reuse it for all time steps.

The horizontal axis plots days since March 12, 2013. On March 13, only the
matrix assembly was faster than the baseline (as a result of the improvements
described in Section 4.1.1); the solve time was slower. By March 21, the “execute”
time was faster for the new vs. baseline codes. By the end (April 29 code base),
execute time for the new code was 26% faster than the baseline, and the “matrix
solve time” was 1% faster than the baseline. Note that sometimes the performance
regressed. This demonstrates the value of carefully tracking performance.

For the study presented in Figure 5, multigrid preconditioner setup was per-
formed only once and reused for the entire simulation. Other test cases (e.g. adap-
tive mesh) may require the multigrid preconditioner setup to be performed every
nonlinear step, so we provide a comparison of the multigrid setup and solve times
between MueLu and ML. ML has previously demonstrated good scaling for solve
time for over 100,000 cores in a different application code [23]. Figure 6 tracks
performance over time (days since Nov 24, 2013) for multigrid setup and solve com-
paring MueLu with baseline ML for both edge-based and element-based methods.
For the rest of this paper, we differentiate between multigrid “setup” and “solve,”



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

14 Parallel Processing Letters

(a) (b)
Fig. 6. Performance over time comparing new MueLu with baseline ML for both edge-based and

element-based methods. Vertical axis: ratio of MueLu to ML times; ratio < 1 means MueLu is

faster. (a) multigrid setup (b) multigrid solve (does not include setup). By the end of the time
period, MueLu is competitive with ML, with MueLu setup for edge-based and element-based

methods being within 21% and 3% respectively of ML and MueLu solve being within 2% of ML.

where the latter does not include setup time. The vertical axis plots the ratio of the
wall times of MueLu to ML (ratio < 1 means MueLu is faster). By the end, MueLu
is competitive with ML, with MueLu setup for edge-based and element-based meth-
ods being within 21% and 3% respectively of ML and MueLu solve being within
2% of ML. We correlated improvements in time with improvements in algorithms.
For example, the substantial improvements to MueLu setup between days 77 and
119 (for edge-based method, MueLu/ML dropped from 3.4× to 2.0×) and between
days 119 and 129 (for edge-based method, MueLu/ML dropped from 2.0× to 1.5×)
were primarily due to implicit matrix rebalancing, improved construction of filtered
matrix, and eigenvalue reuse (first drop), and fused prolongator smoothing opera-
tion for Equation 1 (second drop). These improvements were described in detail in
Section 4.1.2. The substantial improvements to MueLu solve between days 182 and
204 (for edge-based, MueLu/ML dropped from 1.41× to 1.14×) and between days
204 and 214 (for edge-based, MueLu/ML dropped from 1.14× to 1.01×) were due
to a fix to a filtered matrix construction (first drop), and an improved aggregation
procedure (second drop). For the case where multigrid setup needs to be performed
every nonlinear step, the PPE setup and solve times are roughly the same (for
element-based, setup time is roughly 40% of setup plus solve time).

Recall that the purpose of comparing MueLu with ML for the 140 million ele-
ment test case was to demonstrate that little performance is being lost for small to
medium-sized test cases by moving from Epetra/ML to Tpetra/MueLu. For larger
problems, MueLu’s setup time does not scale as well as ML’s. MueLu has a differ-



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

Towards Extreme-Scale Simulations with Second-Generation Trilinos 15

ent relationship with its computational kernels than ML. ML is self-contained, while
MueLu depends more on other Trilinos packages. In particular, a key MueLu setup
kernel – sparse matrix-matrix multiply – is implemented in Tpetra, while ML imple-
mented its own. Improving MueLu’s setup time will require improvements to both
MueLu and Tpetra. However, Tpetra/MueLu offers substantially new capability
compared with ML.

4.2. Software Engineering Challenges

4.2.1. Challenges and risks of integration

Our success relied on the integration of two independently developed codes, Sierra
and Trilinos. This was not a one-time stunt, but a path towards use of the second-
generation Trilinos in Sierra’s production runs. Sierra has around 106 lines of code,
and the relevant parts of Trilinos have about 105 lines of code. Both code bases have
over 100 developers constantly making changes. Furthermore, the two teams have
entirely different work cultures. All these factors increase the challenge of integrating
the two code bases. Historical examples of failure to meet this challenge often result
from differences in work culture between contributing teams, or from ignorance of
the potential risk [24, 25].

4.2.2. Continuous integration

Our key to success was continuous integration between solvers and the application.
This began by nightly tests of Trilinos in Sierra, which was considerably more
challenging than one might expect. Just ensuring that Sierra had the latest version
of Trilinos took much of a full-time Trilinos developer’s effort. Beyond this first step,
continuous performance tests helped us identify and correct performance problems
in Trilinos that only showed up in a real application. Trilinos already has many
“drivers” that exercise scalability and performance, including a Poisson driver for
MueLu. The drivers did help us identify and fix performance problems. However,
since they did not fully represent the linear systems generated by the application
code, the drivers would sometimes predict larger performance improvements than
Sierra could actually achieve, and did not expose the importance of load balancing.
Our most important metric of success is performance comparisons between the
new and baseline application codes, as shown in Section 4.1.3. These comparisons
continue to this day, and still drive performance improvements. In our experience,
the key to real impact is a combination of continuous integration of the code bases,
unit tests, scaling tests with drivers, and continuously tracking performance with
real applications.

5. Results

The new Trilinos is intended to enable very large scale simulations; we demonstrate
this capability in Nalu. Previously we presented scaling results to 131,072 cores



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

16 Parallel Processing Letters

on a Cray XE6 architecture [5]. Here, we present scaling studies to 524,288 cores
on an IBM Blue Gene/Q platform (Lawrence Livermore National Laboratories Se-
quoia). The test case (Figure 7a) is a mixture fraction-based turbulent open jet with
Reynolds number 6600 [26]. The jet emanates from a pedestal from the bottom of
the cylindrical computational domain, which is discretized with unstructured hex-
ahedral elements. Nalu solves six equations: PPE, coupled momentum system for
three component directions, mixture fraction, and subgrid-scale kinetic energy. The
majority of the total run time of Nalu can be split into two main portions: the ma-
trix assembly phase and the linear solve phase. As they are substantially different,
scaling of each phase will be treated separately. MueLu preconditioner setup for the
PPE is performed once and reused for the entire simulation.

(a)
(b)

Fig. 7. (a) Test case is a mixture fraction-based turbulent open jet (Re=6600). Jet emanates
from pedestal at bottom of domain. (b) Strong scaling for element-based method for a 1.12 billion

element mesh. Obtained ideal scaling for momentum solve time while assemble time scales well.

Figure 7(b) presents a strong scaling study for coupled momentum and PPE
for the 1.12 billion element case as processor cores increases from 4k to 64k. Ideal
speedup as plotted is a curved line because the vertical axis is plotted on a linear
scale rather than a logarithmic scale. In Figure 7(b), the fourth curve is the matrix
solve time for PPE (not including the multigrid setup time). For both coupled mo-
mentum and PPE, the scaling for the matrix assembly (local plus global assembly)
is very good. For coupled momentum, scaling of the matrix solve time is optimal.
For PPE, the matrix solve time is very good.

Figure 8 presents weak scaling for matrix assembly and linear system solve for
the coupled momentum system for both the edge-based and element-based methods.
The vertical axis is parallel efficiency and the horizontal axis is the MPI process



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

Towards Extreme-Scale Simulations with Second-Generation Trilinos 17

(a) (b)

Fig. 8. Weak scaling for coupled momentum: (a) Matrix assembly time. (b) Solve time per Krylov

iteration (Symmetric Gauss-Seidel preconditioned TFQMR). Very good scaling as increase in prob-
lem size is 4096x and largest problem has 27 billion row matrix.

(a) (b)

Fig. 9. Weak scaling for PPE: (a) Matrix assembly time. (b) Solve time per Krylov iteration
(multigrid preconditioned TFQMR; not including multigrid setup). Very good scaling as increase

in problem size is 4096x and largest problem has 9 billion row matrix run on 524,288 cores.

count. Each processor core has 17,000 elements. The largest problem has 9 billion
elements, which produces a coupled momentum system matrix with 27 billion rows,
on 524,288 MPI processes. The matrix assembly time includes both the time for
local assembly as well as global assembly. The linear solve time is the time per
TFQMR Krylov iteration. Parallel efficiency is still high even with 524,288 MPI



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

18 Parallel Processing Letters

processes. Both the edge-based and element-based methods scale well. a

Figure 9 presents weak scaling for matrix assembly time and solve time for the
PPE for both the edge-based and element-based methods. The vertical axis is paral-
lel efficiency and the horizontal axis is the MPI process count. The largest problem
has 9 billion elements, which produces a PPE matrix with 9 billion rows, on 524,288
MPI processes. Note that the problem is scaled by a factor of 4096×. The linear
solve time is the time per TFQMR Krylov iteration and does not include multigrid
preconditioner setup time. Parallel efficiency is good even with 524,288 MPI pro-
cesses. Currently, the preconditioner setup has suboptimal scalability. Implementing
scalable algebraic multigrid setup is extremely challenging, because of the creation
of the hierarchy of levels and generation of the coarser level matrices with a triple
matrix product and the matrix-matrix product for the prolongator smoothing op-
eration (Equation 1). A substantial effort is underway by the MueLu and Tpetra
teams to improve setup scaling by comparing MueLu and ML for large scales (ML
is limited to 2 billion rows). Efforts focus on optimizing Tpetra’s matrix-matrix
multiply and communication avoiding approaches.

6. Conclusions

We presented the second-generation Trilinos solver stack and described the inte-
gration process with the SIERRA low Mach module/Nalu application code. This
study highlighted the value of tracking performance during the integration process.
We showed good weak scaling for the matrix assembly and solve in Nalu, for up
to a 9 billion element fluid flow large eddy simulation (LES) problem on unstruc-
tured meshes with a 27 billion row matrix on 524,288 cores of an IBM Blue Gene/Q
platform. The main remaining scaling bottleneck is multigrid setup (mainly sparse
matrix-matrix multiplication); ongoing work will address this issue.

The second-generation Trilinos solver stack allows arbitrarily large global enti-
ties and provides a path forward for future computing architectures. Its integration
into Nalu required significant revisions, which fixed correctness, per-process perfor-
mance, and parallel scalability issues. All resulting new features and fixes in Trilinos
will prove useful for a wide variety of other application codes, not just Nalu. Fur-
thermore, best practices we learned for improving Nalu’s finite-element assembly
performance will apply generally to any finite-element application with implicit
solves using Trilinos. We continue to mature the new Trilinos, especially for current
and upcoming manycore architectures.

aRecall that the element-based method employs a 27-point stencil while the edge-based method
employs a 7-point stencil, so the linear system for the element-based method has roughly four times

the number of nonzeros per matrix row as the edge-based method. For the case of unstructured
meshes of decent quality, the edge-based method can therefore be substantially faster. However,

for generalized unstructured meshes of poor quality, the element-based approach has superior
robustness and accuracy [20], as well as a more favorable computation/communication ratio.



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

Towards Extreme-Scale Simulations with Second-Generation Trilinos 19

Acknowledgment

We thank the following colleagues for their contributions: Ryan Bond, Kevin Copps,
Eric Cyr, Mehmet Deveci, Karen Devine, Jeremie Gaidamour, Micheal Glass,
Michael Heroux, Robert Hoekstra, Kyran Mish, Brent Perschbacher, Kendall Pier-
son, Jim Willenbring, and Alan Williams. The Lawrence Livermore National Lab-
oratory (LLNL) Sequoia team lent us invaluable assistance (John Gyllenhaal and
Scott Futral deserve special mention). Finally, our thanks to friends from other in-
stitutions – Jenny Gable Brown, Anthony Stuckey, Jimmy Su, Jon Kuroda, Bryan
Catanzaro, Matt Knepley, and Piotr Luszczek – who contributed historical examples
of unsuccessful software integration projects.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-
heed Martin Company, for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

References

[1] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long,
R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring,
A. Williams, and K. Stanley. An overview of the Trilinos project. ACM Transactions
on Mathematical Software, 31(3):397–423, 2005.

[2] S. Domino, C. Moen, S. Burns, and G. Evans. SIERRA/Fuego: A multi-mechanics
fire environment simulation tool. In 41st Aerospace Sciences Meeting and Exhibit,
AIAA 2003-149, 2003.

[3] H. C. Edwards and J. Stewart. Sierra: A software environment for developing complex
multiphysics applications. In K. Bathe, editor, 1st MIT Conference on Computational
Fluid and Solid Mechanics. Elsevier, 2001.

[4] H. C. Edwards, D. Sunderland, V. Porter, C. Amsler, and S. Mish. Manycore perfor-
mance portability: Kokkos multidimensional array library. Scientific Programming,
20(2):89–114, 2012.

[5] P. Lin, M. Bettencourt, S. Domino, T. Fisher, M. Hoemmen, J. Hu, E. Phipps,
A. Prokopenko, S. Rajamanickam, C. Siefert, E. Cyr, and S. Kennon. Towards ex-
treme scale simulation with next-generation Trilinos: a low Mach fluid application
case study. In Workshop on Large-Scale Parallel Processing (LSPP) 2014, in con-
junction with IPDPS2014, 2014.

[6] E. Hawkes, O. Chatakonda, H. Kolla, A. Kerstein, and J. Chen. A petascale direct
numerical simulation study of the modelling of flame wrinkling for large-eddy simu-
lations in intense turbulence. Combusion and Flame, 159(8):2690–2703, 2012.

[7] V. Moureau, P. Domingo, and L. Vervisch. From large-eddy simulation to direct
numerical simulation of a lean premixed swirl flame: Filtered laminar flame-PDF
modeling. Combusion and Flame, 158(7):1340–1357, 2011.

[8] J. Schmidt, M. Berzins, J. Thornock, T. Saad, and J. Sutherland. Large scale parallel
solution of incompressible flow problems using Uintah and Hypre. Technical Report
UUSCI-2012-002, University of Utah, 2012.

[9] C. Baker and M. Heroux. Tpetra and the use of generic programming in scientific
computing. Scientific Programming, 20(2):115–128, 2012.

[10] R. Tuminaro, M. Heroux, S. Hutchinson, and J. Shadid. Aztec user’s guide–version
2.1. Technical Report SAND99-8801J, Sandia National Laboratories, 1999.

[11] E. Bavier, M. Hoemmen, S. Rajamanickam, and H. Thornquist. Amesos2 and Belos:



January 6, 2015 10:30 WSPC/INSTRUCTION FILE paper

20 Parallel Processing Letters

Direct and iterative solvers for large sparse linear systems. Scientific Programming,
20(3):241–255, 2012.

[12] M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala. ML 5.0 smoothed aggregation
user’s guide. Technical Report SAND2006-2649, Sandia National Laboratories, 2006.

[13] J. Gaidamour, J. Hu, C. Siefert, and R. Tuminaro. Design considerations for a flexible
multigrid preconditioning library. Scientific Programming, 20(3):223–239, 2012.

[14] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan. Zoltan data
management services for parallel dynamic applications. Computing in Science and
Engineering, 4(2):90–97, 2002.

[15] E. Boman, K. Devine, V. Leung, S. Rajamanickam, L. A. Riesen, M. Deveci, and
Ü. Çatalyürek. Zoltan2: Next-generation combinatorial toolkit. Technical report, San-
dia National Laboratories, 2012.

[16] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solv-
ing nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Com-
puting, 7(3):856–869, July 1986.

[17] R. Freund. A transpose-free quasi-minimal residual algorithm for non-hermitian linear
systems. SIAM Journal on Scientific Computing, 14(2):470–482, 1993.

[18] M. Deveci, S. Rajamanickam, K. Devine, and Ü. Çatalyürek. Multi-jagged: A scalable
parallel spatial partitioning algorithm. IEEE Transactions on Parallel and Distributed
Systems (In revision), 2014.

[19] H. C. Edwards, A. Williams, G. Sjaardema, D. Baur, and W. Cochran. Toolkit compu-
tational mesh conceptual model. Technical Report SAND2010-1192, Sandia National
Laboratories, 2010.

[20] S. Domino. Low Mach Sierra thermal/fluids module Nalu: theory manual. Technical
report, Sandia National Laboratories internal document, 2014.

[21] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, volume 14 of Springer Series in Computational Math-
ematics. Springer, Berlin, 1991.

[22] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid based on smoothed aggre-
gation for second and fourth order problems. Computing, 56:179–196, 1996.

[23] P Lin. Improving Multigrid Performance for Unstructured Mesh Drift-Diffusion Simu-
lations on 147,000 cores. International Journal for Numerical Methods in Engineering,
91:971–989, 2012.

[24] N. Leveson and C. Turner. An investigation of the Therac-25 accidents. IEEE Com-
puter, 26(7):18–41, July 1993.

[25] I. Perepu and V. Gupta. ERP implementation failure at Hershey Foods Corporation.
Technical Report 908-001-1, ICFAI Center for Management Research, 2008.

[26] A. Abdel-Rahman, W. Chakroun, and S. Al-Fahed. LDA measurements in the tur-
bulent round jet. Mechanics Research Communications, 24(3):277–288, 1997.


